-
Induction Session - 09/02
-
Anaconda Installation Procedure
-
Data Science Curriculum
-
Deep Dive into Curriculum
-
Introduction to IDE
Tutors
Technology For All
Meher Fatima
PROGRAM OVERVIEW
CURRICULUM
Welcome to Technology For Al
Module 1: Python Programming
-
Introduction to Python
-
Python Keywords
-
Data Types
-
Data Structures
-
Loops
-
Lambda, Filter, Map and Reduce
-
Functions, Modules and Classes
-
Modules II
-
Modules and Classes
-
Revision Session - Python
Module 1: Python Assignments
-
Assignment - 1
-
Assignment - 2
-
Assignment - 3
-
Assignment 4
-
Assignment 5
-
Assignment 6
Module 2: Data Analysis
-
Introduction to Data Analysis - Numpy
-
Pandas
-
Missing Values
-
Visualization
-
Numpy File
-
Matplotlib File
-
Matplotlib
-
Statistics I
-
Statistics Notes
-
Inferential Statistics
WEB SCRAPING
-
Web Scrapping
-
Web Scraping II
-
Web Scrapping III
-
Web Scraping IV
Module 2: Assignments
-
Numpy Assignment
-
Pandas Assignment
-
Matplotlib Assignment
-
Visualization Assignment
Placement Activities
-
Resume Building and Interview Preparation Session
Module 3: Machine Learning
-
Introduction to Machine Learning
-
Evaluation Metrics
-
Metrics Continuation
-
Classification - KNN
-
Linear Regression
-
Linear Regression Notes
-
Metrics and Lifecycle
-
Math behind Machine Learning
-
Logistic Regression
-
Decision Trees
-
Random Forest
-
Boosting Techniques
-
AdaBoost Algorithm
-
Naive Bayes Algorithm
-
SVM Algorithm
-
Clustering
-
PCA
Module 3: Assignments
-
Linear Regression Assignment
-
Logistic Regression Assignment
-
KNN Assignment
-
Decision Trees Assignment
Module 4: Deep Learning
-
Introduction to Deep Learning
-
Cost function and Activation functions
-
Optimization Functions
-
House Price Prediction Dataset
-
Introduction to CNN
-
Iris Classification - Tensorboard
-
Image Classification
-
Reshaping, Resizing, Filters, Blurring, Gaussian
-
Convolution Max Pooling
-
CNN Case study
-
CNN Case Study II
-
Word2Vec and Glove
-
RNN and LSTM
-
FNN,RNN and Transformers
Internship Tasks
-
Web Scraping Project
-
Machine Learning Project (Option 1)
-
Machine Learning Project (Option 2)
-
Deep Learning Project
SQL and Tableau
-
Introduction
-
SQL Commands
-
Handling Null Values and Sub Queries
-
Introduction to Tableau
-
Tableau Day II
-
Tableau III
-
Tableau IV
-
SQL Revision Session