-
Anaconda Installation Procedure
-
Introduction to the Course
Tutors
Technology For All
PROGRAM OVERVIEW
CURRICULUM
Welcome to TechnologyForAll
Module 1: Python Programming
-
Introduction to Python
-
Introduction Python File
-
Basics of Python
-
Intro Python Noteboook
-
Basics of Python II
-
Datatypes
-
Mentoring Session File
-
Control Statements
-
Control Statements File
-
Functions
-
Functions II
-
Modules and Classes
-
Functions Notes I
-
Functions Notes II
-
Functions, Modules and Classes - Hands on
-
File Handling
-
Modules and Classes
-
File Handling Notes
-
Exception Handling
Module 1: Python Assignments
-
Assignment 1
-
Assignment 2
-
Assignment 3
-
Assignment 4
-
Assignment 5
Module 2: Data Analysis
-
Numpy
-
Numpy II
-
Numpy Notes
-
Numpy II file
-
Pandas I
-
Pandas File
-
Probability and Statistics
-
Probability and Statistics PDF
-
Random Variables and Probability Distribution
-
Random Variables and Probability Distribution PDF
-
OOPs
-
More on Statistics
-
Hypothesis Testing I
-
Hypothesis Testing II
-
Mentoring Session
-
Visualization I
-
Visualization II
-
Missing Values
-
Probability and Statistics
-
Regular Expressions
-
Regular Expressions II
-
Web Scrapping
-
Web Scraping II
-
Web Scrapping III
-
Web Scraping IV
Module 2: Data Analysis Assignments
-
Numpy Assignment
-
Pandas Assignment
-
Visualization-1 Assignment
-
Visualization-2 Assignment
Revision Sessions
-
Python Revision Session
-
Python File
Module 3: Machine Learning
-
Introduction to Machine Learning
-
Lecture - 1 Introduction to Machine Learning
-
Basics of Linear Algebra
-
Lecture -2: Basics of Linear Algebra
-
Linear Regression
-
K-Nearest Neighbors Algorithm
-
KNN Implementation
-
Lecture - 3: KNN
-
Linear Regression Implementation and Gradient Descent
-
Lecture - 4 Linear Regression
-
Lecture - 5: Gradient Descent
-
Linear Regression file
-
Gradient Descent Continuation
-
Gradient Descent implementation
-
Gradient Descent continuation
-
Logistic Regression
-
Logistic Regression Implementation
-
Revision Session - Machine Learning
-
Revision Session II - Machine Learning
-
Evaluation Metrics
-
Evaluation Metrics II
-
Support Vector Machines
-
Lecture 6: Logistic Regression Notes
-
Lecture 7: Evaluation Metrics Notes
-
Lecture 8: Polynomial Regression Notes
-
Decision Trees
-
Decision Tree II
-
Lecture 10: Decision Tree Notes
-
Naive Bayes
-
Lecture 11: Naive Bayes Notes
-
Model Selection
-
Lecture 12: Model Selection Notes
-
Ensemble Methods
-
Ensemble Techniques
-
Gradient Boosting and Clustering
-
Clustering
-
PCA
-
Sentiment Analysis Case Study
-
Sentiment Analysis case study cont.
Placement Activities
-
Resume Building and Interview Preparation Session
Module 3: Assignments
-
Linear Regression Assignment
-
Logistic Regression Assignment
-
KNN Assignment
-
Decision Tree Assignment
-
Ensemble Algorithms Assignment
-
SVM Assignment
Internship Tasks
-
Web Scraping Project
-
Machine Learning Project (Option 1)
-
Machine Learning Project (Option 2)
-
Deep Learning Project
Module 4: Deep Learning
-
Introduction to Deep Learning
-
Introduction to Deep Learning II
-
Output Function, Loss Functions and Deep Networks
-
MNIST Dataset
-
Introduction to CNN
-
CNN on MNIST and Batch Normalisation
-
Batch Normalization II
-
Visualizing CNN
-
Object Detection
-
Introduction to NLP
-
Word2Vec, Glove and Intro to RNN
-
Recurrent Neural Networks
-
LSTM and GRU
-
LSTM and GRU II
-
Encoder Decoder
-
Introduction to CNN
-
CNN on MNIST and Batch Normalization
-
AlexNet, GoogleNet and ResNet
-
Object Detection
-
Recurrent Neural Networks
-
Code Files
-
Autoencoders
-
Transformers, BERT and GPT
-
UNet, RCNN and Transfer Learning
-
Machine Translation Implementation
-
Image Classification and Transfer Learning
SQL and Tableau
-
Introduction
-
SQL Commands
-
Handling Null Values and Sub Queries
-
Introduction to Tableau
-
Tableau Day II
-
Tableau III
-
Tableau IV
-
SQL Revision Session