-
Anaconda Installation File
-
Course Curriculum
-
Introduction to DataScience
Tutors
Technology For All
PROGRAM OVERVIEW
CURRICULUM
Welcome to TechnologyForAll
Module 1: Python Programming
-
Introduction to Python
-
Datatypes, Operators, and Strings
-
Day 1 and 2 Python files
-
Functions and understanding traceback logs
-
Strings and Lists
-
Revision Session
-
Functions - Lambda
-
Functions - Maps
-
Map, Reduce and Filter
-
Modules
-
OOPs Concepts
-
Classes and Inheritence
-
Encapsulation
Module 1: Assignments
-
Assignment 1
-
Assignment 2
-
Assignment- 3
-
Assignment - 4
-
Assignment - 5
Module 2: Data Analysis
-
Introduction to Data Analysis
-
Intro to Numpy
-
Numpy II
-
Introduction to Pandas
-
Pandas II
-
Pandas III
-
EDA
-
EDA II
-
Visualization
-
Seaborn Visualization
-
Web Scraping
-
Web Scraping II
-
Regular Expressions
-
Streamlit
-
Streamlit II
Module 2: Assignments
-
Numpy Assignment
-
Pandas Assignment
-
Visualization Assignment
-
Visualization Assignment
Internship Tasks
-
Web Scraping Project
-
Machine Learning Project 1
-
Machine Learning Project 2
-
Deep Learning Project
Module 3: Machine Learning
-
Introduction to Machine Learning
-
Intro to Machine Learning II
-
Evaluation Metrics
-
Metrics PDF
-
Math Behind ML
-
Notes - Math behind ML
-
KNN Algorithm
-
Linear Regression
-
Linear Regression - Hands On
-
Logistic Regression Algorithm
-
Linear and Logistic
-
KNN File
-
Decision Tree PDF
-
Decision Trees
-
Logistic Regression PDF
-
Naive Bayes
-
Bagging Techniques
-
Support Vector Machines
-
Ada Boost
-
XG Boost Algorithm
-
K - Means Clustering
-
PCA
Revision Sessions
-
Python Session
-
Python File
Module 3: Assignments
-
Linear Regression Assignment
-
Logistic Regression Assignment
-
KNN Assignment
-
Decision Tree Assignment
-
Naive Bayes Assignment
-
Ensemble Methods Assignment
-
SVM Assignment
-
Accuracy Metrics Assignment
Module 4: Deep Learning
-
Introduction to Deep Learning
-
Activation Functions
-
Activation Functions II
-
Cost Function
-
Revision Session
-
Optimization Function and Loss Functions
-
Back Propagation
-
Diabetes Classification
-
Diabetes Contd
-
Computer Vision
-
Image Processing
-
Convolution Neural Networks
-
CNN Implementation
-
VGG 16 vs Custom Model
Placement Activities
-
Resume Building and Interview Preparation Session
Deep Learning
-
Introduction to Deep Learning
-
Cost Functions and Activation Functions
-
Optimization Functions
-
House Price Prediction Dataset
-
Introduction to CNN
-
Iris Classification - Tensorboard
-
Intro to computer Vision. CNN, Convolution, Max pooling
SQL and Tableau
-
Introduction
-
SQL Commands
-
Handling Null Values and Sub Queries
-
Introduction to Tableau
-
Tableau Day II
-
Tableau III
-
Tableau IV
-
SQL Revision Session